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Abstract—This report presents the design and simulation of an Adaptive
Cruise Control (ACC) system for a heavy-duty Class-8 truck. A nominal
Connected Cruise Control (CCC) law is augmented by a Control-Lyapunov-
Function / Control-Barrier-Function Quadratic Program (CLF–CBF–QP) to
guarantee safety (minimum headway) while retaining performance. Three
lead-vehicle profiles—including a severe braking scenario—are evaluated.
Results confirm forward-collision avoidance, smooth speed tracking, and
real-time feasibility.
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1. Introduction

Adaptive Cruise Control (ACC) lets a vehicle follow a lead car by
automatically matching its speed and keeping a comfortable gap. In
this highway-driving study the ego vehicle is a Class 8 truck, and
the lead vehicle is a typical passenger car. The truck’s greater
mass and longer stopping distance make safety harder to guarantee
when the lighter lead car brakes hard or accelerates suddenly.
To address this challenge, we build a safety-critical controller that

blends two control ideas:

• Control Lyapunov Functions (CLFs) guide the truck toward
its desired speed.

• Control Barrier Functions (CBFs) impose a minimum head-
way so the truck never leaves a collision-free safety set.

Both objectives are enforced at every time step by solving a sin-
gle Quadratic Program (QP) that prioritises safety first and
speed-tracking second.
A nominal reference acceleration 𝑢ref—inspired by Coopera-

tive Connected Cruise Control (CCC) formulas—is computed locally
from the simulated relative distance and speed. No real V2X link
or physical sensors are used; instead, ground-truth states from the
MATLAB simulation (optionally corrupted with Gaussian noise) act
as measurements. The QP tries to follow 𝑢ref whenever it does not
conflict with the CBF constraint.
Key contributions

1. Unified CLF-CBF-QP formulation: a single optimisation that
guarantees safety while preserving ride comfort for a heavy
truck.

2. V2X-style reference tracking: a CCC-inspired 𝑢ref that needs
only simulated relative states.

3. Comprehensive evaluation: MATLAB simulations with four
lead-car profiles (steady cruise, sudden brake, speed ramp, and
noisy cruise) show the controller maintains headway, respects
truck acceleration limits, and remains feasible even under ex-
treme scenarios—outperforming a baseline ACC that lacks
safety constraints.

2. Ego-Vehicle Longitudinal Dynamics

2.1. Concept
The Class 8 truck is represented by Longitudinal Bicycle Model.
The longitudinal state vector is (𝐷, 𝑣, 𝑣𝐿), where 𝐷 is the
bumper-to-bumper gap, 𝑣 the truck speed, and 𝑣𝐿 the lead-car speed.
The speed dynamics include two resistive forces

𝐹drag =
1
2 𝜌 𝐶𝑑 𝐴𝑣

2, 𝐹roll = 𝜇𝑟𝑚𝑔 .

Drag grows with 𝑣2, while rolling resistance is nearly constant and
switches sign with the travel direction. These forces appear in the
open-loop vector field 𝑓(𝑥) used in the CLF and CBF calculations.
The ACC model is

𝐷̇ = 𝑣𝐿 − 𝑣,

𝑣̇ = 𝑢 −
𝐹drag + 𝐹roll

𝑚 ,

𝑣̇𝐿 = 𝑎𝐿,

(1)

where 𝑢 is the control acceleration returned by the CLF-CBF-QP and
𝑎𝐿 is the prescribed lead-car acceleration from the selected profile.
This three-state system underpins the Lyapunov function, barrier
function, and quadratic-program formulations that follow.

Table 1. Parameters for the ACC simulation.

Parameter Value

Mass,𝑚 18 000 kg
Drag coefficient, 𝐶𝑑 0.60
Frontal area, 𝐴 10m2

Rolling-resistance coefficient, 𝜇𝑟 0.010
Gravity, 𝑔 9.81m s−2
Simulation time step, 𝑇𝑠 0.001 s

3. Control–Lyapunov Function (CLF) and Stability

3.1. Concept
A Control–Lyapunov Function is a positive-definite scalar map 𝑉 ∶
ℝ𝑛→ ℝ≥0 satisfying (i) 𝑉(𝑥) = 0 only at the desired equilibrium and
(ii) 𝑉̇ < 0 is achievable for all 𝑥 ≠ 0. Maintaining 𝑉̇ ≤ −𝛾(𝑉) for
some class-𝒦 function 𝛾 guarantees asymptotic stability.

3.2. Sliding variables and CLF candidate
𝑒 = 𝐷 − 𝜏clf 𝑣, 𝑧 = (𝑣𝐿 − 𝑣) + 𝜆 𝑒, (2)

• Gap 𝐷— bumper-to-bumper distance between the lead car and
the ego truck (m).

• Desired time–gap spacing 𝜏clf 𝑣—the gap that exactly satisfies
the chosen time-headway rule at speed 𝑣.

• Headway constant 𝜏clf —Lyapunov design parameter (here
1.8 s), deliberately smaller than the safety headway 𝜏𝐶𝐵𝐹 so the
CLF can tighten the gap without violating the CBF.

• Spacing error
𝑒 = 𝐷 − 𝜏clf 𝑣,

• Composite variable

𝑧 = (𝑣𝐿 − 𝑣) + 𝜆 𝑒,

combining the relative speed 𝑣𝐿 − 𝑣 with the spacing error.
• Damping factor 𝜆— a positive gain (s−1) that weights the gap
term in 𝑧.

With these definitions, the control-Lyapunov candidate is

𝑉(𝑥) = 1
2
𝑧2,
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a positive definite function - measure of the squared distance to the
manifold 𝑧 = 0 ⇔ (𝐷, 𝑣) = (𝜏clf𝑣, 𝑣𝐿).

3.3. Gradient and Lie derivatives

∇𝑥𝑉 = 𝑧
[
𝜆, −(1 + 𝜆𝜏clf), 1

]
, (3)

𝑓(𝑥) =
⎡
⎢
⎢
⎢
⎣

𝑣𝐿 − 𝑣

−
𝐹drag(𝑣) + 𝐹roll(𝑣)

𝑚
𝑎𝐿

⎤
⎥
⎥
⎥
⎦

, 𝑔(𝑥) =
⎡
⎢
⎢
⎣

0
1
0

⎤
⎥
⎥
⎦

, (4)

𝐿𝑓𝑉 = 𝑧
[
𝜆(𝑣𝐿 − 𝑣) −

(
1 + 𝜆𝜏clf

)𝐹drag + 𝐹roll
𝑚 + 𝑎𝐿

]
,

𝐿𝑔𝑉 = 𝑧
(
−1 − 𝜆𝜏clf

)
.

(5)

3.4. Class-𝒦 function and relaxed inequality

Choose the linear class-𝒦 function

𝛾(𝑉) = 𝜀𝑉, 𝜀 > 0.

Introduce slack 𝛿 ≥ 0:

𝐿𝑓𝑉 + 𝐿𝑔𝑉 𝑢 ≤ −𝜀𝑉 + 𝛿, 𝛿 ≥ 0. (6)

The infimum inf 𝑢∈ℝ
[
𝐿𝑓𝑉 + 𝐿𝑔𝑉 𝑢

]
is the steepest decrease attainable

at state 𝑥.

3.5. Admissible set
𝐾clf(𝑥) =

{
(𝑢, 𝛿) ∣ (6), 𝛿 ≥ 0

}
; 𝑢 ∈ 𝒰 ∶= [ 𝑢min, 𝑢max ]

3.6. Stability via LaSalle

With (𝑢, 𝛿) ∈ 𝐾clf(𝑥) and a large slack weight 𝑝,

𝑉̇ ≤ −𝜀𝑉 + 𝛿 ≤ −(𝜀 − 𝑝−1)𝑉 ⇒ 𝑉(𝑡) ≤ 𝑉(0) 𝑒−(𝜀−𝑝−1)𝑡 .

LaSalle’s principle yields convergence to {𝑉 = 0} ≡ {𝑧 = 0}, i.e. the
desired headway manifold.

Table 2. CLF design parameters.

Parameter Symbol Value
Time headway 𝜏clf 1.8 s
Damping 𝜆 0.5 s−1

Decay rate 𝜀 0.10
Slack weight 𝑝 100

4. Control–Barrier Function (CBF) and Safety

4.1. Concept

For the affine system 𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢 a continuously differentiable
map ℎ ∶ ℝ𝑛 → ℝ is a relative–degree–one control–barrier function
(CBF) if there exists an extended class–𝒦∞ function 𝛼 such that

sup
𝑢∈ℝ𝑚

[
𝐿𝑓ℎ(𝑥) + 𝐿𝑔ℎ(𝑥) 𝑢

]
≥ −𝛼

(
ℎ(𝑥)

)
, ∀𝑥. (7)

Any feedback input 𝑢(𝑥) that satisfies

𝐿𝑓ℎ(𝑥) + 𝐿𝑔ℎ(𝑥) 𝑢(𝑥) + 𝛼
(
ℎ(𝑥)

)
≥ 0 (8)

renders the 0-super-level set 𝒞 = {𝑥 ∶ ℎ(𝑥) ≥ 0} forward-invariant.

4.2. Barrier definition for longitudinal safety

ℎ(𝑥) = 𝐷 −
(
𝜏𝑑 𝑣 + 𝐷min

)
, 𝑥 =

[
𝐷, 𝑣, 𝑣𝐿

]⊤
. (9)

The chosen constants1 are listed in Table 3.

Table 3. CBF parameters

Parameter Symbol Value

Safety time headway 𝜏𝑑 2 s
Minimum spacing 𝐷min 6m
Exponential–decay gain 𝛾ℎ 0.4

4.3. Safe set, boundary, interior
𝒞 = {𝑥 ∶ ℎ(𝑥) ≥ 0}, 𝜕𝒞 = {𝑥 ∶ ℎ(𝑥) = 0}, Int 𝒞 = {𝑥 ∶ ℎ(𝑥) > 0}.

𝒞 enforces the policy 𝐷 ≥ 𝜏𝑑𝑣 + 𝐷min; 𝜕𝒞 is the “safety wall”; Int 𝒞 is
strictly safe.

4.4. Extended class–𝒦∞ function
A map 𝛼 ∶ ℝ → ℝ belongs to 𝒦∞ when it is continuous, strictly
increasing, 𝛼(0) = 0, and unbounded as 𝑟 → ±∞. We adopt the
linear choice

𝛼(𝑟) = 𝛾ℎ 𝑟 , 𝛾ℎ = 0.4 > 0, (10)

which satisfies all criteria and yields exponential retreat from the
boundary.

4.5. Gradient and Lie derivatives

∇𝑥ℎ = [ 1, −𝜏𝑑, 0 ], ‖∇𝑥ℎ‖ =
√
1 + 𝜏2𝑑 > 0.

With the longitudinal dynamics 𝐷̇ = 𝑣𝐿 − 𝑣, 𝑣̇ = 𝑢, 𝑣̇𝐿 = 𝑎𝐿,

𝐿𝑓ℎ(𝑥) = (𝑣𝐿 − 𝑣), (11)
𝐿𝑔ℎ(𝑥) = −𝜏𝑑 (< 0). (12)

Since 𝐿𝑔ℎ(𝑥) ≠ 0 everywhere, ℎ depends affinely on 𝑢.

4.6. CBF inequality and safe–control set
Substituting 𝛼(𝑟) = 𝛾ℎ𝑟 into (8) gives the linear inequality

(𝑣𝐿 − 𝑣) − 𝜏𝑑 𝑢 + 𝛾ℎ ℎ(𝑥) ≥ 0. (13)

All inputs that satisfy (13) constitute

𝐾cbf(𝑥) =
{
𝑢 ∈ ℝ ∶ (𝑣𝐿 − 𝑣) − 𝜏𝑑𝑢 + 𝛾ℎℎ(𝑥) ≥ 0

}
,

which is non-empty for every 𝑥 because 𝐿𝑔ℎ = −𝜏𝑑 ≠ 0.

4.7. Forward invariance (Nagumo)

• Interior (ℎ > 0): If 𝑢(𝑥) ∈ 𝐾cbf(𝑥), ℎ̇ ≥ −𝛾ℎℎ, so ℎ(𝑡) decays at
worst exponentially and never crosses zero.

• Boundary (ℎ = 0): Inequality (13) reduces to 𝑣𝐿 − 𝑣 − 𝜏𝑑𝑢 ≥ 0.
Because 𝐿𝑔ℎ is negative, there is always a suitable brake com-
mand, giving ℎ̇ ≥ 0.

Hence, by Nagumo’s theorem, the headway set 𝒞 is forward-invariant
for any measurable feedback 𝑢(𝑥) ∈ 𝐾cbf(𝑥).

4.8. Summary
• Barrier map: ℎ = 𝐷 − 𝜏𝑑𝑣 − 𝐷min.
• Parameters: 𝜏𝑑 = 2 s, 𝐷min = 6m, 𝛾ℎ = 0.4.
• ∇𝑥ℎ ≠ 0 everywhere; 𝐿𝑔ℎ = −𝜏𝑑 ≠ 0 ⇒ relative degree 1.

1𝜏𝑑 is selected larger than the Lyapunov headway 𝜏clf to guarantee that safety dominates
tracking.
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• Linear extended 𝒦∞ function ensures exponential (𝛾ℎ) decay
toward the boundary.

• Inequality (13) defines a non-empty safe-control set 𝐾cbf;
Nagumo’s condition proves forward invariance of 𝒞.

5. Connected Cruise Controller (CCC)

5.1. Single-preceding-vehicle formulation

Connected Cruise Control augments ACC by incorporating cooper-
ative speed tracking. The multi-vehicle law is here specialized to a
pair single leader-follower.

5.2. Controller architecture
𝑢ref = 𝐴

(
𝑉(𝐷) − 𝑣

)
+ 𝐵

(
𝑊(𝑣𝐿) − 𝑣

)
, (14)

where 𝐷 is the gap, 𝑣 the ego speed, 𝑣𝐿 the lead speed, and 𝐴, 𝐵 > 0
are proportional gains.

5.3. Range policy

𝑉(𝐷) = max
{
0, min{𝜅(𝐷 − 𝐷st), 𝑣}

}
. (15)

5.4. Speed policy
𝑊(𝑣𝐿) = min{𝑣𝐿, 𝑣}. (16)

5.5. Combined behavior

The term 𝐴[𝑉(𝐷) − 𝑣] restores progress, while 𝐵[𝑊(𝑣𝐿) − 𝑣] damps
relative speed, producing a spring-damper pair with stiffness 𝐴𝜅 and
damping 𝐴 + 𝐵.

Table 4. CCC parameters

Parameter Symbol Value
Range-error gain 𝐴 0.5
Speed-error gain 𝐵 0.5
Range-policy slope 𝜅 0.2 s−1
Stand-still gap 𝐷st 6m

5.6. Role in the safety architecture

𝑢ref is forwarded to the CLF–CBF–QP layer; when no safety con-
straint is active the truck follows 𝑢ref exactly, preserving comfort and
cooperation.

6. Quadratic-Program (QP) Synthesis

6.1. Motivation

At each sampling instant we need an acceleration 𝑢 that

(i) stays close to the nominal CCC command 𝑢ref ,
(ii) satisfies the relaxed CLF inequality 𝐿𝑓𝑉 + 𝐿𝑔𝑉 𝑢 ≤ −𝜀𝑉 + 𝛿,
(iii) satisfies the CBF safety inequality 𝐿𝑓ℎ + 𝐿𝑔ℎ 𝑢 ≥ −𝛾ℎℎ.

Because the CLF and CBF constraints are affine in (𝑢, 𝛿) and the
comfort objective is quadratic, the problem is naturally posed as a
convex quadratic program.

6.2. Decision vector

𝑧 = [𝑢𝛿] ∈ ℝ2, 𝛿 ≥ 0 (CLF slack).

6.3. Cost functional
𝐽(𝑧) = 1

2
(𝑢 − 𝑢ref )2 +

1
2
𝑝 𝛿2, 𝑝 = 100 ≫ 1. (17)

Hessian matrix: Any quadratic can be written as

𝐽(𝑧) = 1
2
𝑧⊤𝐻𝑧 + 𝑓⊤𝑧 + 𝑐, (18)

with
𝐻 = [1 0

0 𝑝] , 𝑓 = [−𝑢ref0 ] , 𝑐 = 1
2
𝑢2ref .

𝐻 ≻ 0 is diagonal, so the optimisation is strictly convex.

6.4. Affine inequality constraints

Origin Inequality Matrix row 𝑎⊤𝑧 ≤ 𝑏
CLF 𝐿𝑓𝑉 + 𝐿𝑔𝑉 𝑢 − 𝛿 ≤ −𝜀𝑉 𝑎1 = [𝐿𝑔𝑉, −1], 𝑏1 = −𝐿𝑓𝑉 − 𝜀𝑉
CBF 𝐿𝑓ℎ + 𝐿𝑔ℎ 𝑢 ≥ −𝛾ℎℎ 𝑎2 = [−𝐿𝑔ℎ, 0], 𝑏2 = 𝐿𝑓ℎ + 𝛾ℎℎ
Slack 𝛿 ≥ 0 𝑎3 = [0, −1], 𝑏3 = 0
Input 𝑢min ≤ 𝑢 ≤ 𝑢max 𝑎4 = [1, 0], 𝑏4 = 𝑢max ; 𝑎5 =

[−1, 0], 𝑏5 = −𝑢min

6.5. QP statement

min
𝑢,𝛿

1
2
(𝑢 − 𝑢ref )2 +

1
2
𝑝 𝛿2

s.t. 𝐿𝑓𝑉 + 𝐿𝑔𝑉 𝑢 − 𝛿 ≤ −𝜀𝑉,
𝐿𝑓ℎ + 𝐿𝑔ℎ 𝑢 ≥ −𝛾ℎℎ,
0 ≤ 𝛿, 𝑢min ≤ 𝑢 ≤ 𝑢max .

(QP)

6.6. Feasibility logic

The CBF row is never relaxed; feasibility is guaranteed because 𝐿𝑔ℎ =
−𝜏𝑑 ≠ 0 implies the constraint is always satisfiable. If CLF and CBF
conflict, the optimiser increases 𝛿, sacrificing convergence before
safety. With 𝑝 = 100 the slack remains small.

6.7. Convexity and solver

Diagonal𝐻 with positive entries and linear constraints⇒ strictly con-
vex problem with a unique global minimiser. QP solver: MATLAB’s
quadprog

Table 5. QP parameters

Parameter Symbol Value
Slack weight 𝑝 100
Max propulsion 𝑢max +2.75ms−2
Max braking 𝑢min −5.5ms−2

6.8. Validation summary

• Convex: diagonal positive Hessian, affine constraints.
• Priority hierarchy: CBF hard, CLF soft (via 𝛿), comfort softer.
• Forward invariance: CBF inequality unrelaxed⇒ headway set
remains safe.

• Stability: when CBF inactive (ℎ > 0) slack is driven to zero, so
the CLF inequality enforces exponential decay of 𝑉.
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7. Lead-Vehicle Test Profiles

7.1. Table

Table 6. Acceleration scripts used to evaluate the safety-critical ACC.

No. Scenario Lead acceleration 𝑎𝐿(𝑡) Test
objective

1 Cruise
with mild
oscilla-
tions

Phase 1 (ramp-up):
𝑎𝐿 = +3ms−2 until
𝑣𝐿 ≥ 25m s−1.
Phase 2: 𝑎𝐿 =
0.5 sin

(
2𝜋⋅0.2 (𝑡−𝑡0)

)
m s−2.

Ride comfort
and stability
under gentle
speed pertur-
bations.

2 Single
hard
brake

Phase 1: same ramp-up as
Profile 1.
Phase 2: 𝑎𝐿 = 0 for 10 s.
Phase 3: emergency stop
𝑎𝐿 = −6.5m s−2 to 𝑣𝐿=0.
Phase 4: 𝑎𝐿 = 0 thereafter.

Collision-
avoidance
performance
during an
isolated
severe
braking
maneuver.

3 Noisy
cruise
transient

Phase 1: ramp-up as above.
Phase 2: proportional hold
𝑎𝐿 = 0.2 (25 − 𝑣𝐿).
Measurement noise
injected: 𝜎𝐷 = 0.09m,
𝜎𝑣 = 0.10ms−1, 𝜎𝑎 = 0.05
ms−2.

Robustness
to sensor
noise during
benign steady
cruising.

7.2. Output Plots

Here are the Plots for three different scenarios/profile.

Figure 1. Scenario 1 part A

Figure 2. Scenario 1 part B
Observations:

Observations for Scenario 1:

• Speed tracking: The ego-truck speed (solid blue) closely fol-
lows the lead-car speed (dashed red) and its gentle 0.2 Hz oscil-
lations around 33 m/s. An initial lag during ramp-up (0–20 s)
settles into in-phase cruising thereafter.

• Gap maintenance: The following distance 𝐷(𝑡) increases
from the start-gap ( 10 m) to about 95–100 m, oscillating syn-
chronously with the speed fluctuations. No headway violations
occur, as the barrier ℎ(𝑥) remains positive.

• Control inputs: The nominal CCC command 𝑢ref (blue dashed)
exhibits ±6 m/s2 swings, whereas the filtered command 𝑢 (or-
ange solid) is much smoother (±1 m/s2), indicating minimal
safety interventions under mild oscillations.

• CLF slack 𝛿: Slack peaks near 90 during the start-up transient
(around 15 s) when rapid gap closure conflicts with the CLF
decrease. In steady cruising, 𝛿 settles to 25–40, showing only
necessary stability relaxations.

• Lyapunov function 𝑉(𝑥): 𝑉 rises to 250 during the transient
and then oscillates mildly without unbounded growth, demon-
strating effective enforcement of the CLF decrease condition.

• Barrier function ℎ(𝑥): ℎ quickly grows to 35 m and undulates
gently with the speed waves. It remains strictly positive at all
times, confirming forward invariance of the safety set.

4
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(a) Scenario 2 part A. (b) Scenario 2 part B

Figure 3. Output Plots for Scenario 2

(a) Scenario 3 part A. (b) Scenario 3 part B

Figure 4. Output Plots for Scenario 3

5



Safety-Critical Adaptive Cruise Control via Control Lyapunov and Control Barrier Function - Quadratic Program

Observations for Scenario 2:

• Speed response and delay: The ego-truck accelerates nearly in
lock-step with the lead vehicle up to the cruise speed ( 25 m/s).
Upon the abrupt braking at 30 s, the truck’s deceleration lags
by about 1–2 s due to the QP capping at its maximum service-
brake limit (–5.5 m/s²), illustrating the trade-off between safety
enforcement and physical actuation bounds.

• Gap collapse and recovery: The following distance 𝐷(𝑡),
which had grown to roughly 85 m, shrinks rapidly to 20 m
during the hard brake, then increases slowly as the lead remains
stopped. The slope of the gap recovery reflects the nominal
CCC’s minimal braking before coasting, ensuring the truck does
not aggressively re-close the distance once the lead is halted.

• Nominal vs. filtered input:The nominal command 𝑢ref
plunges to –7 m/s² at the braking onset, but the actual accel-
eration 𝑢 is constrained to –5.5 m/s² and exhibits a smoothed
triangular profile as the QP trades off CLF convergence slack
against safety. This demonstrates the QP’s ability to moderate
overly aggressive references while still guaranteeing barrier sat-
isfaction.

• Slack variable dynamics:The slack 𝛿(𝑡) peaks sharply at 92
exactly when the lead’s deceleration rate exceeds the truck’s brak-
ing capability, temporarily relaxing the CLF condition. Once 𝑢
saturates and the safety envelope is no longer threatened, 𝛿 falls
dramatically to near zero by 35 s, indicating restoration of full
CLF enforcement.

• Lyapunov function behavior:The Lyapunov measure 𝑉(𝑥)
surges to 230 during the brake, capturing large speed and spac-
ing errors. After the lead stops, 𝑉 decays nearly exponentially,
confirming that with slack relaxed only briefly, the system re-
turns smoothly toward the desired equilibrium manifold.

• Barrier function maintenance:The barrier ℎ(𝑥) jumps to ap-
proximately 40m at brake onset—demonstrating a built-in safety
margin above zero—and then decays gently toward zero with-
out crossing it. The positive ℎ(𝑡) throughout confirms forward-
invariance: the truck never breaches the minimum headway
despite extreme lead maneuvers.

Observations for Scenario 3:

• Speed tracking under noise: Although the ego truck con-
verges to the lead’s speed, small high-frequency oscillations
(±0.2 m/s) persist, indicating that measurement noise is leaking
into the control loop. A state estimator or low-pass filter could
improve smoothness.

• Gap steadiness—and jitter: The gap 𝐷(𝑡) settles near 90 m
but exhibits ±0.5 m fluctuations. In safety-critical contexts, even
sub-meter jitter can be undesirable; a smoother distance profile
would enhance both comfort and perceived safety.

• Control input volatility: The filtered command 𝑢 shows con-
tinuous small-amplitude noise (±0.5 m/s²). While within actu-
ator limits, this chatter could excite mechanical resonances or
increase wear. Penalizing 𝑢̇ in the QP or using robust filtering
could mitigate the effect.

• Persistently high slack 𝛿: After the transient, 𝛿 remains
around 30–35 instead of decaying toward zero. This indicates the
CLF constraint stays substantially relaxed even when safety is
assured, slowing convergence unnecessarily in noisy conditions.

• Lyapunov function ripple: 𝑉(𝑥) stabilizes near 200 but ex-
hibits small ripples (±5), showing the system never attains true
quasi-steady-state. This may impact energy efficiency and re-
duce control authority.

• Barrier function noise sensitivity: The safety margin ℎ(𝑥)
stays positive, but high-frequency dips (< 0.2 m) are visible.
Although not unsafe, these dips could trigger spurious inter-
ventions; introducing a dead-band or a robust CBF formulation
could avoid nuisance activations.

8. Conclusion

In this project we developed and validated a foundational
safety-critical Adaptive Cruise Control (ACC) framework for a
heavy-duty truck, built on Control Lyapunov Functions (CLFs), Con-
trol Barrier Functions (CBFs) and a real-time Quadratic Program
(QP) filter. Rather than chasing full optimality from the outset, our
goal was to construct a transparent, theoretically rigorous baseline
that always puts safety ahead of aggressive performance.
Simulation across three representative lead-vehicle scenarios

confirmed that the controller preserves safe headways, enforces
Lyapunov stability, and respects realistic actuation limits—even
during emergency braking and under noisy measurements. The
noise-injected profile, however, exposed limitations in robustness:
persistent input jitter, sustained CLF slack, and sensitivity to
high-frequency disturbances. These observations point to clear op-
portunities for future enhancement.
The unavoidable tension between a desire for optimal performance

and the uncompromising need for safety lies at the heart of modern
autonomous systems. Our CLF–CBF–QP architecture addresses this
tension directly by encoding both stability and safety in a mathemati-
cally verifiable way. Given the rising demand for high-performance
and provably safe autonomy, we expect CLF–CBF frameworks to
become staples in modern control engineering.
While the present controller is intentionally basic, it provides a ro-

bust platform for further work. Next steps include noise-aware state
estimation, rate-penalised QP formulations, and adaptive barrier tun-
ing—extensions that promise greater robustness without sacrificing
the guarantees we have established.
On a personal note, this collaborative effort has reinforced for us

the value of clarity, simplicity and principled theory in the pursuit
of safe and reliable automated systems. We view the work reported
here as a solid foundation on which deeper and more sophisticated
control designs can be constructed.
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